Life goes in cycles, it seems to mess up, but it ends perfectly well-rounded. — Re: 4 circles, each delineated with squares, 1 encircling the other, 2011–10.27
To detect if 2 sets of data are correlated, we can use some statistics as decisional logic.
Press enter or click to view image in full size
# this illustrates detecting data sets as +ve correlated, -ve correlated, or non-correlated. from numpy import mean from numpy import std from numpy.random import randn from numpy.random import seed from matplotlib import pyplot from scipy.stats import pearsonr # import the correlation function from scipy.stats import linregressdef compute_statistics_correlation_and_plot(data1, data2): # summarize print('data1: mean=%.3f stdv=%.3f' % (mean(data1), std(data1))) print('data2: mean=%.3f stdv=%.3f' % (mean(data2), std(data2))) # calculate Pearson's correlation corr, _ = pearsonr(data1, data2) print('Pearsons correlation: %.3f' % corr) # plot the data pyplot.scatter(data1, data2) pyplot.title('Scatter plot of data1 vs data2') pyplot.xlabel('data1') pyplot.ylabel('data2') # show the plot pyplot.show()